
Page 1 of 7 1/19/2005 Dan DaSilva

Specification for ASIC Motor Control

This motor controller operates a two phase stepper motor which runs on a modified sine current
waveform which has the same symmetry as a sine wave. Each motor has two phases which are 90
degrees out of phase. In order to simplify calculations all position moves are began from zero velocity.
The ASIC design will contain two controllers one for pan and one for tilt. The system operates with
adjustable values of jerk and acceleration to produce velocity and position. The output of the controller
is a analog voltage signal which is then converted to winding current. At this time the voltage to current
conversion is not covered.

1.0 Initialization

Maximum acceleration is set on powerup. Acceleration is limited to this value by hardware.

Maximum Velocity is set on powerup. Velocity is limited to this value by hardware.

Position is a 56 bit unsigned number with 24 bits of full steps, 8 bits of micro steps, and 24 bits of
fraction. The 8 bits of micro steps index the lookup table to produce the PWM.

2.0 Position,Velocity, Acceleration, and Jerk Ranges
Position is a positive number which has a programmable wrap around point. If the system has 65536
micro steps in one revolution of the camera, then position will start at 0 and then go to 65535 and then
back to 0 with positive velocity. Negative velocity will go move from 0 to 65535 and decrement next to
65534 and then down to zero. The wrap around point will match one full revolution of the camera.

Jerk, Acceleration, and Velocity are signed values, clockwise being positive and counterclockwise
negative. Maximum velocity and maximum acceleration are contained in registers and absolute value of
velocity and acceleration are limited to these maximums without any processor action except at the start
when the registers are loaded.

2.1 Register formats

Position xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 0
 24 bits full steps 8 bits of micro step 24 bits of fractional micro step

Velocity 00xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx x

 6 bits of micro step 25 bits of fractional micro step

Acceleration 00xxxxxx xxxxxxxx xxxxxxxx x

 23 bits of fractional micro step

Jerk 00xxxxxx xxxxxxxx xxxxxxxx x

 23 bits of fractional micro step

Page 2 of 7 1/19/2005 Dan DaSilva

A value in the jerk register will move from jerk to acceleration to velocity to position in one cycle.
Example jerk = 100 hex in one cycle acceleration=100 hex, velocity=100 hex and position=80 hex.

Absolute maximum velocity is 64 micro steps/cycle which is a value of 3FFFFFFF hex (1 sign bit 31
bits of magnitude, this is actually one count less than 64 micro steps/cycle but close enough.)
Acceleration maximum value is 7FFFFF hex (1 sign bit 23 bits of magnitude). Jerk maximum value is
7FFFFF hex (1 sign bit 23 bits of magnitude).

2.2 Cycle Time and Maximum Velocity
A 0.9 degree/step Motor should be able to run at 1000 degrees/second with a gear ratio of 20 to 1,
therefore the maximum speed should be (1000*20)/0.9 steps/second = 22,222 steps/second = 5,688,832
micro steps/second . Maximum velocity is 64 micro steps/cycle, therefore our cycle speed must be at
least 88,888 cycles/second. With a 108 Megahertz clock we can output 10 bits of resolution (1024
clocks) at 105,468 cycles per second. Which the makes a maximum cycle speed of 6,750,000 micro
steps/second (at 64 micro steps/cycle).

Velocity has 1 sign bit, 6 micro step bits and 25 bits of fraction. The least significant bit of the fraction is
ignored when adding velocity to position. This makes the position fraction equal to 24 bits. Minimum
velocity is (6,750,000 micro steps/second)/(31 bits magnitude) = 0.00314 micro steps/second

2.3 Acceleration and Jerk
Maximum acceleration is ¼ micro step/cycle/cycle = ¼*105468*105468(1/256) = 10,862,792
steps/second/second Minimum acceleration is maximum acceleration/(23 bits) = 165
step/second*second

Maximum jerk is equal to maximum acceleration in one cycle. A jerk value larger than acceleration
makes no sense. Minimum jerk is 165 step/second*second/cycle = 17,481,642
step/second*second*second.

3.0 Wait Register Comparisons
When comparing with values of position the fraction part can be ignored (less than one micro step can
be ignored). When the motor is stopped the fraction part should be flushed so that a new move start with
zero fraction.

When comparing position, velocity and acceleration to targets, if value is ramping up the compare
should be greater than or equal rather than just equal because the equal value may not be hit exactly.
Ramping down should be less than or equal.

4.0 Command Implementation
3.1 Reading Values
All registers (Position, Velocity, Acceleration, Jerk) can be read at any time by the processor.

4.1 Hitting the targets
All position moves will be done from zero velocity. Therefore if a position is commanded while the
motor is moving the velocity is commanded to zero and then the move is made.

Page 3 of 7 1/19/2005 Dan DaSilva

 To command a target velocity the processor will set a wait on velocity compare. This compared velocity
will be reached before the target velocity is reached. When the compared velocity is reached, jerk is set
to a value which will drive the acceleration to zero. When zero acceleration is reached the target value of
velocity will be reached. (If the processor has computed the wait velocity and jerk value correctly.)

 To command a target position the processor will set to wait on a position which will be reached before
the target position is reached. When the wait position is reached, jerk is set to a value which will drive
the velocity to zero. When zero acceleration is reached the target value of velocity will be reached. (If
the processor has computed the wait velocity and jerk values correctly.)

In order to insure that the target velocity or target position are reached it may be required to calculate
target velocity or target position that have a small amount of velocity left when the target values are
reached and to clamp the motor on the target. This may mean slightly overshooting the target instead of
computing zero velocity at the exact target point. If the target position is undershot and the velocity will
reverse before the target is reached. It would be better to slightly overshoot the target and clamp the
motor to exactly the target when it is reached. As long as the velocity is small this will not be problem.

The processor will calculate distances and velocities in non-real time. Therefore it could have several
milliseconds to make the calculations necessary for a position move or velocity changes.

Note that the end of the ramp up point is determined distance required to reach zero velocity when
traveling the maximum velocity (see move 1 below). For short moves the end of ramp up is equal to
start of ramp down and maximum velocity is never reached (see move 2 below). (Note that the example
is shown with very little or no jerk effect. The effect of jerk is to round off velocity changes.)

4.2 Overriding exist commands in sequence buffer:
A command in the sequence buffer can be overwritten. Example: The system is waiting on position to
reach a value before changing the jerk input. A velocity command comes in and immediately interrupts
the wait with a new jerk value and sets a new wait.

4.3 Velocity command duration
Velocity commands produce velocities which last until a new command changes the velocity, therefore
if no new command comes in the velocity will keep the motor running indefinitely.

4.4 Setting Position

Page 4 of 7 1/19/2005 Dan DaSilva

Position can be immediately set to a value by command. This will only be done by the processor during
calibration when motion is stopped. It is used to establish the home position.

5.0 PWM Motor Output:
The output of the motion control system is two phases of PWM for each axis. A 10 bit value is
converted to PWM by a digital accumulating comparator which produces the closest possible PWM
state at all times. For example: values of 50% would be produced as a 101010101….. rather than series
of 512 ones and then 512 zeros. The frequency contained in the output is therefore higher and easier to
low pass filter. The low pass filter converts the PWM to analog voltage signal.

Hardware will produce a signal which indicates the direction of the current flow in each phase. Note that
the two phases are 90 degrees out of phase.

To minimize the table size symmetry in a sine wave (or sine wave like waveforms) can be use to reduce
the table size by ¼ . The table contains the waveform from 0 to 90 degrees. 90 to 180 is gotten by
indexing the table from 90 to 0 or in reverse. The value for 180 to 360 are gotten by reversing the
current direction line and repeating the values form 0 to 180 degrees. The table size is therefore 256 * 10
bits = 2560 per table. Each motor needs one table.

6.0 Motion Equations

acceleration = jerk * time

velocity = jerk * (time * time + time) / 2)

position = jerk * ((time*time + time) / 2 + (time*time*time - time) / 6)

Page 5 of 7 1/19/2005 Dan DaSilva

Time Jerk Accel Velocity Calc Vel Position Calc Position H I
t jerk acc +=jerk vel +=acc H * jerk pos += vel (I + H)*jerk (t*t + t)/2 (t*t*t - t)/6
0 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0
2 1 2 3 3 4 4 3 1
3 1 3 6 6 10 10 6 4
4 1 4 10 10 20 20 10 10
5 1 5 15 15 35 35 15 20
6 1 6 21 21 56 56 21 35
7 1 7 28 28 84 84 28 56
8 1 8 36 36 120 120 36 84
9 1 9 45 45 165 165 45 120
10 1 10 55 55 220 220 55 165
11 1 11 66 66 286 286 66 220
12 1 12 78 78 364 364 78 286
13 1 13 91 91 455 455 91 364
14 1 14 105 105 560 560 105 455
15 1 15 120 120 680 680 120 560
16 1 16 136 136 816 816 136 680
17 1 17 153 153 969 969 153 816
18 1 18 171 171 1140 1140 171 969
19 1 19 190 190 1330 1330 190 1140
20 1 20 210 210 1540 1540 210 1330
21 1 21 231 231 1771 1771 231 1540
22 1 22 253 253 2024 2024 253 1771
23 1 23 276 276 2300 2300 276 2024
24 1 24 300 300 2600 2600 300 2300
25 1 25 325 325 2925 2925 325 2600
26 1 26 351 351 3276 3276 351 2925
27 1 27 378 378 3654 3654 378 3276
28 1 28 406 406 4060 4060 406 3654
29 1 29 435 435 4495 4495 435 4060
30 1 30 465 465 4960 4960 465 4495
31 1 31 496 496 5456 5456 496 4960
32 1 32 528 528 5984 5984 528 5456
33 1 33 561 561 6545 6545 561 5984
34 1 34 595 595 7140 7140 595 6545
35 1 35 630 630 7770 7770 630 7140
36 1 36 666 666 8436 8436 666 7770
37 1 37 703 703 9139 9139 703 8436
38 1 38 741 741 9880 9880 741 9139
39 1 39 780 780 10660 10660 780 9880
40 1 40 820 820 11480 11480 820 10660
41 1 41 861 861 12341 12341 861 11480
42 1 42 903 903 13244 13244 903 12341
43 1 43 946 946 14190 14190 946 13244
44 1 44 990 990 15180 15180 990 14190
45 1 45 1035 1035 16215 16215 1035 15180
46 1 46 1081 1081 17296 17296 1081 16215
47 1 47 1128 1128 18424 18424 1128 17296
48 1 48 1176 1176 19600 19600 1176 18424

Page 6 of 7 1/19/2005 Dan DaSilva

7.0 External Motor Controller Interfaces
I2C for Trinamic

SPI

8.0 Internal Current Control

Average and Peak Internal Current Control

9.0 Processor Inteface

For a position move, the sequencer would have loaded into it the following commands which would
clamp (ie affectively stop) the accumulator from moving to a new position:

Instruction (i): wait(position, ramp_down) // Accumulator waits for position= ramp_down
Instruction (i+1): set(jerk, ramp_down_jerk, Done=1) // Set jerk to ramp_down_jerk (Which will cause
velocity=0, acceleration=0 and position= target all to happen at the same point in time).

Instruction (i): wait(position, target) // Accumulator waits for position target to be reached,
Instruction (i+1): set(velocity,0) // Set velocity to zero, (executed after position X is reached)
Instruction (i+2): set(accel,0) // Set acceleration to zero
Instruction (i+3): set(jerk,0,Done=1) // Set jerk to zero, Done=1 indicates it is the last instruction.

For a velocity move:
Instruction (i): wait(velocity, velocity_target) // Accumulator waits for velocity_target to be reached,
Instruction (i+1): set(accel,0) // Set acceleration to zero, (executed after position X is reached)
Instruction (i+2): set(jerk,0,Done=1) // Set jerk to zero, Done=1 indicates it is the last instruction.

The Done=1 only indicates it is the last instruction, and software still
needs to toggle the
Go/Start bit to get the sequencer to execute a new sequence out of
memory.

For hardware to automatically reset the appropriate counters, it would decode the command,
wait(position or velocity, X, Done=1): If the cmd=wait and done=1, reset accel, and jerk, and
conditionally reset velocity if waiting for position (if waiting for velocity, then don't reset velocity).

10.0 Output Lines

The two output bits for each phase need be configured in two ways:

Configuration 1:
One bit for Direction 0=negative, 1=positive
One bit for On/Off (Configurable on/off = 0/1 or 1/0)

Configuration 2:

Page 7 of 7 1/19/2005 Dan DaSilva

One bit Positive Direction
One bit Negative Direction
Off is both directions off Hardware protection so that both are never on at the same time

11.0 Block Diagram
See PDF file (PTZ ASIC Motion)

PTZ ASIC Motion
pdf.pdf

	Specification for ASIC Motor Control
	2.0 Position,Velocity, Acceleration, and Jerk Ranges
	3.0 Wait Register Comparisons
	4.0 Command Implementation

